A systematic methodology for increasing recovery from petroleum reservoir by wettability alteration

Geoffrey Thyne

Turning Brown Fields to Gold Fields

Acknowledgements

- Pat Brady
- Pubudu Gamage
- Haifeng Jiang
- Paulina Mwangi
- Mao Romero
- Adeel Sohal

Outline

- Take Home and Conclusions
- Why use this technique?
- What is this technique?
- Science and Engineering
- Practical Aspects

Oil Production

Typical Decline Curve for Oil Field Production

Time

Take Home Message

- Wettability Alteration can be employed at any stage.
- Can be deployed during D&C (unconventional).

Typical Decline Curve for Oil Field Production

Dil Production (Bbls)

Time

Take Home Message

- Wettability Alteration can be employed at any stage.
- Can be applied during regular waterfloods.

Oil Production (Bbls)

Typical Decline Curve for Oil Field Production

Time

Conclusions

- The LSE is due to wettability change.
- Reservoir potential can be evaluated by screening.
- Reservoir wettability can be quantified using standard geochemical surface modeling.
- Experimental programs can provide reservoirspecific data for waterflood design to optimize recovery.

Outline

- Take Home and Conclusions
- Why use this technique?
- What is this technique?
- Science and Engineering
- Practical Aspects

- Salinity is a primary control and the only component that can be changed.
- No Change in Normal Operations
- Potential Increase in Recovery is High.
- Cost is Low.
- Works in Clastics and Carbonates.
- Increase Reserves.
- No Environmental Impact

- North slope pilot test increased recovery by 15% OOIP.
- Shell waterflood in Syria increased recovery by 10-15% OOIP.
- Ekofisk waterflood increased recovery by 30% OOIP.

- Evidence from Bakken, Milk River and Wolfcamp that fresh water does not optimize recovery.
- Instead of fresh water formulations, brackish water formulations may improve production.
 - Water source costs are lower.

Outline

- Take Home and Conclusions
- Why use this technique?
- What is this technique?
- Science and Engineering
- Practical Aspects

What do you need?

- Water chemistry favorable to change
- Rock with required surface sites
- Oil with sufficient polar components
- Favorable reservoir conditions
 - Temperature
 - Good waterflood

Outline

- Take Home and Conclusions
- Why use this technique?
- What is this technique?
- Science and Engineering
- Practical Aspects

Why do we care about wettability?

- Wettability is the tendency of oil or water to adhere to the reservoir rock surfaces.
- Wettability is recognized as a major control on oil mobility and amount of recovery.
- The macroscopic fluid behavior is controlled by microscopic interactions between oil, water and rock surfaces.
- Normally, we try to improve wettability by adding surfactants (lower interfacial tension) to increase recovery.

Wettability

- Reservoir wettability is the equilibrium between water, rock and oil.
- Wettability is major control on recovery.
- "Hydrocarbon-wet systems retard hydrocarbon mobility."
- "Water-wet systems promote hydrocarbon mobility."

Wettability

Recovery = Oil Release + Oil Mobility

How do we link wettability to salinity?

- Wettability is directly linked to recovery.
- Wettability is the chemical equilibrium between <u>water</u>, rock and oil.
- Wettability is the balance of forces between the oil-water and water-rock interfaces.
- Change in water chemistry changes the forces (interfacial tension) between surface and oil:
 - 1 electrostatic (attractive or repulsive), and
 - 2 van der Waals (attractive).

Wettability Models

- Model of aqueous, oil and surface reactions
- Double layer models assume surfaces are coated with water and electrostatic forces are dominant.

From Brady and Thyne, 2017

Laboratory Method

- Modified Flotation Test (Mwangi et al. 2013)
- Allows rapid investigations in wide range of rock types.
 - Age 0.2 grams of rock in brine for 48 hours.
 - Decant brine.
 - Age rock in 3ml of oil (decane) for 48 hours, stir every 12 hours.
 - Add brine to oil-rock mixture.
 - Stir and allow 24 hours.
 - Decant, dry, and weight fractions.

Age rock in brine Decant brine

Age rock in oil

Add brine

Lab Tests - Modified Flotation

Initial separation

Courtesy of Paulina Mwangi, PhD candidate, LSU

ESal Engineered Salinity Rock powder floats in oleic phase

After 24 hours

Key Observations

Experiments show some oil is mobile and some is retained.

Sohal et al. - 2017

Berea Sandstone vs. Chalk (limestone) Naphthenic Acid

Change in wettability is normalized relative to pure decane

Data courtesy of Paulina Mwangi, PhD candidate, LSU, Petroleum Engineering

Example – Changes in wettability of chalk-oil-brine system for different brines

Outline

- Take Home and Conclusions
- Why use this technique?
- What is this technique?
- Science and Engineering
- Practical Aspects

- Salinity is a primary control and the only component that can be changed.
- No Change in Normal Operations
- Potential Increase in Recovery is High.
- Cost is Low.
- Works in Clastics and Carbonates.
- Increase Reserves.
- No Environmental Impact

ESal[™] Work Flow

- Screening and Scoping
 - Screening evaluate field for compatibility with process
 - Empirical model generates quantitative score based on field's oil, water and rock properties
 - Preliminary water source assessment
 - Scoping Economic Assessment of Projects
 - Expense/profit modeling (modified Kinder Morgan)
 - Multiple economic evaluations and scenarios
- Lab Tests
 - Wettability Measurements
 - Determine initial wettability and optimum chemistry
- Deployment
 - Model to assess other fluid-fluid-rock interactions
 - Design injection fluid chemistry for optimum wettability
 - Select water source
 - Generate water treatment specifications
 - Install equipment

Screening for Good Candidates

• Input rock, water, oil and field properties to algorithm and calculate aggregate weighted score.

Engineered Salinity

Questions?

Dilution benefit plateau clay control in SS

ESal Engineered Salinity

SPE 180370

Oil must have polar components

Engineered Salinity

Paper 180370-MS Wettability Alteration in Reservoirs: How it Applies to Alaskan Oil Production Geoffrey Thyne

Technique Validation

- Approach: compare the trends between Dual Drop Dual Crystal (DDDC) and MFT results
- Test 1: wettability effects due to sulfate concentration
 - Materials: dolomite rock, yates oil, and yates brine
 - DDDC results from a study by Kasmaei and Rao (2014)

